ERRATA

TO WHAT EXTENT IS A II-ALLYLIC INTERMEDIATE INVOLVED IN SOME PALLADIUM-CATALYZED ALKYLATIONS ?

J.C. FIAUD and J.L. MALLERON

Laboratoire de Synthèse Asymétrique, Bât 420, Université
Paris-Sud, 91405-Orsay France

Please note the following corrections to the above paper: p. 1400, on lines 4 and 5 delete and its racemic mixture (entry 1)

on line 9 delete 1 and 2,

Also below is a revised version of Table 1

Palladium-catalyzed addition of sodium dimethyl malonate and sodium cyclopentadienide on allylic substrates in THF^{a)}.

Entry	Substrate	phosphine ligand	nucleophile	(%) yield	Product (a) _D (CHCl ₃)	α/γ ^b)
1	dl - <u>6a</u>	(-) diop	sodium dimethyl malonate	82	+3.9°	
2	dl - <u>6a</u>	(+) diop	"	88	- 3.89°	
3	<u>5</u>	(-) diop	TI .	40	+ 1.20°	
4	$(+) - 6a^{c}$	(-) diop	ii .	52	+ 4.10°j)	
5	d1 - 6b	(-) diop	11	66	+ 0.69°	
6	$(+)-\overline{\underline{6b}^{d}}$	(-) diop	"	76	+ 2.1°	
7	(+)- <u>6c</u> e)	(-) diop	11	89	+ 1.69°	
8	(+)- <u>6c</u> e)	(+) diop	11	58	- 2.86°	
9	$(+)-\frac{6c^{e)}}{\frac{7^{f}}{7^{f}}}$	dppb ^h)	11	72	- 0.15°	
10	<u>7</u> f)	(-) diop	11	68	+ 1.31°	0.78
11	<u>7</u> f)	(+) diop	11	84	- 2.66°	1.56
12	<u>7</u>	dppb ^{h)}	11	83	- 0.32°	1.04
13	(+)- <u>6c</u>	(-) diop	sodium cyclopentadienide	58 e	-16.1°	
14	(+)- <u>6c</u>	dppe ⁱ⁾	11	69	- 1.6°	

a) 48 hr at room temperature : catalyst $Pd(dba)_2(2.6 \times 10^{-5} \text{mole})$; phosphine $(2.6 \times 10^{-5} \text{mole})$ allylic acetate $(2.6 \times 10^{-3} \text{ mole})$; b) α/γ ratio for overall substitution was determined by integration of the cyclic vinyl and methine protons in the ^1H n.m.r. spectra of 8; c) $\{\alpha\}_D^{20}$ + 105.4° (c = 10, hexane); d) $\{\alpha\}_D^{20}$ + 40.7° (c = 10.5, hexane); e) Obtained from LAH reduction of (-)-carvone in ether at 0°C and successive acetylation: $\{\alpha\}_D^{22}$ - 50.2° (c = 5.8, hexane) f) Obtained from LAD reduction of (-)-carvone in ether at 0°C and successive acetylation; $\{\alpha\}_D^{22}$ - 50.2° (c = 8, hexane); g) Diop is 2,3-isopropylidenedioxy-1,4-bis(diphenylphosphino)-butane, (-)-diop $\{\alpha\}_D^{22}$ - 12.4° (c = 2, benzene); (+)-diop $\{\alpha\}_D^{22}$ + 12.5° (c = 2, benzene); h) dppb stands for 1,2-bis(diphenylphosphino)butane; i) dppe stands for 1,2-bis diphenylphosphino)ethane; j) the configuration of this compound has been shown to be R by chemical correlation to (+)-(S)-3-(2-hydroxyethyl)cyclohexene.